The common definition of PM includes particles that are no smaller than 100 nanometers in size. Particles smaller than 100 nm are instead reported as ‘ultrafine particles’ or ‘UFPs’ and are not covered in this article. Within the above-mentioned PM definition, which thus includes particles from 0.1 to 10 micrometers in size, the smaller the particles are, the deeper they can penetrate through our respiratory system and into our bloodstream, posing a higher hazard to our health. The World Health Organization (WHO) reports airborne particulate matter as a Group 1 carcinogen and as the biggest environmental risk to health, with responsibility for about one in every nine deaths annually . Fig. 1 shows the size range of common pollutant sources, including filtration technologies used for the removal of such contaminants (adapted from John Wiley and Sons, Best Practices Guide to Residential Construction, 2006).
Historically, PM values are measured as ‘mass concentration’ in μg/m3. The reason behind this is that the traditional and most accurate way to measure PM is the gravimetric method. This procedure makes use of a pre-weighed filter to collect ambient particles that are physically pre-sorted based on their size (e.g. all particles below 2.5 μm are let in). At the end of the sampling period, usually 24 hours, the filter is weighed to determine the total accumulated PM mass in μg. Mass concentration is then obtained by dividing the mass increase of the filter by the 24-hour total volume of air that passed through the filter, resulting in a value in μg/m3. Although gravimetric methods are long established as the most accurate way of determining mass concentration, they have some practical limitations to their diffusion in everyday applications: these instruments are bulky, very expensive, they process only one PM size per measurement (e.g. PM2.5), real-time sampling is not possible, and they cannot output the particle number count.
For these reasons, real-time optical particle counters (OPCs) have progressively found their way into the air quality monitoring market. These instruments are based on different optical principles, typically scattering or absorption, with light scattering being the most commonly used. In these OPCs, the particle passes through the light source (usually a laser beam) and causes scattering (or absorption) of the incoming light, which is then detected by a photodiode and converted into real-time particle count and mass concentration values.
Currently, optical detection is the most widespread technique due to its ease of use and unbeatable cost-performance ratio. In recent years, OPCs have become small enough to be integrated into air conditioners, air quality monitors and air purifiers, and are used to regulate and control air quality in households, cars and outdoor environments.
Although the basic principle of OPCs might seem simple at first from an implementation point of view, not all OPCs perform in the same way and the quality of their measurement depends greatly on the engineering and design of such devices. The optical principle works very well in terms of particle counting, but as these devices are used mainly for the estimation of the PM mass concentration, they will be susceptible to estimation errors due to the different optical properties of the particles (e.g. shape and color) and different mass densities. The quality of the mass estimation will thus vary highly depending on the manufacturer algorithm used to convert the measured optical signal into PM mass concentration. In addition, the internal airflow engineering has a high impact on the accuracy and drift of these sensors as particles can accumulate easily on their optical elements (laser, photodiode, beam-dump) and degrade their output over time if they are not properly engineered.
Working principle
The working principle of the Sensirion SPS30 is based on laser scattering. A controlled airflow is created inside the sensor by means of a fan. As shown in Fig. 2, an internal feedback loop between the microprocessor and fan stabilizes the fan speed and therefore the airflow through the sensor. Environmental PM travels inside the sensor from inlet to outlet, carried by the airflow (black dots in Fig. 3). In correspondence with the photodiode, particles in the airstream pass through a focused laser beam, as indicated in red in Fig. 3, causing light scattering. The scattered light is then detected by the photodiode and converted to a mass/number concentration output through Sensirion’s proprietary algorithms, which run on the SPS30 internal microcontroller.