

SHT21 interfacing with EnOcean STM300

Enabling wireless humidity & temperature sensor applications

Preface

This document explains how SHT21 humidity & temperature sensors can be interfaced with EnOcean STM300 wireless modules. The necessary hardware configuration (i.e. SHT21-STM300 extension board) is discussed in respective chapter. In the software configuration chapter, a recommended program

sequence is described, to optimize power consumption.

In the chapter SHT21-STM300 reference design, an extension board and an EnOcean EDK300 developer kit are put together for reference measurements. All layout and sample code data are finally bundled in the SHT21-STM300 package.

SHT21-STM300 package

The package provides all information to rebuild the extension board, and software sample code to develop own wireless humidity & temperature sensor products.

It consists of

- Application Note AN508: "I²C Dolphin interface"
- AN "SHT21 interfacing with EnOcean STM300"
- Extension board schematic and assembly
- Sample code
- Energy budget calculator

Free download link www.enocean.com/sht21-stm300

For further information and product details regarding EnOcean EDK300 or STM300, please refer to www.enocean.com/enocean_modules

In addition, extension boards (see schematic Figure 1) are available as assembled PCBs from Sensirion upon request.

Hardware configuration

Following figure gives an overview, of what hardware configuration is needed to drive SHT21 sensors with STM300 modules.

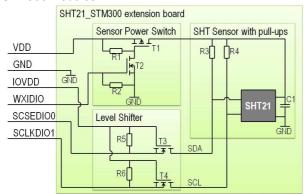


Figure 1 Schematic of hardware configuration.

As the SHT21 is powered from 2.1 to 3.6V and STM300 I/O ports operate on 1.8V¹, the SCL and SDA communication lines need to be level shifted.

Further, to optimize the overall power consumption, a sensor power switch is implemented with usage of WXIDIO pin. For I²C communication, pull-ups for data and clock line are embedded. To assure stable I²C communication it is recommended not to exceed 130kHz frequency for SCL clock line. A capacitor is used to stabilize the voltage supply close to SHT21.

Software configuration

The program sequence diagram which is implemented in the sample code is visualized in Figure 2 while Table 1 provides description of tasks numbered from 1 to 8. A complete measurement and transmission cycle from 1 to 8 (also referred to as cycle), therefore includes a temperature, a relative humidity (RH) measurement and transmission of the RF protocol.

With deep sleep or deep sleep time t_s , the time between two cycles is described. As the STM300 module as well as the SHT21 is not active during deep sleep, the energy consumption is minimal.

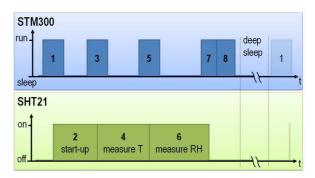


Figure 2 Program sequence diagram

¹ For EVA320-2 evaluation board the DVDD voltage output is connected to IOVDD IO voltage pin.

SHT21 interfacing with EnOcean STM300

With usage of the WXIDIO pin and recommended hardware implementation on the extension board, a power switch allows the STM300 module to switch the sensor on and off. As the STM300 module is in sleep mode during the sensor is performing start-up or measuring tasks, the power consumption of the system can be optimized.

Task		
STM300 power up / initialization		
Set WXIDIO pin HIGH		
SHT21 start-up		
Set resolution / start temperature measurement		
Temperature measurement		
Get raw temperature value		
Relative humidity (RH) measurement		
Get raw RH value / calculate physical values		
Set WXIDIO pin LOW		
Send data over radio		

Table 1 Program sequence tasks

The deep sleep time is dominant parameter to adjust the power budget of the system to the application requirements. The more cycles the system has to perform in a given time (i.e. the shorter the deep sleep time), the higher is the system power consumption. The deep sleep time can be found in the "main.c" sample code file. Other parameters relevant for SHT21, like the resolution setting, are defined in the "sht21.h" library.

SHT21_STM300 Reference Design

For reference design purpose a wireless sensor node powered from a solar panel is described in the following.

Figure 3 SHT21_STM300 reference design of a wireless sensor node powered by a solar panel.

It consists of EVA320-2 evaluation kit from EnOcean (including STM300 module, solar panel and capacitor for energy storage) and the extension board including SHT21 humidity & temperature sensor.

To fit the module performance to the application specific requirements, there are two basic questions discussed in the following:

- How much energy is consumed by the wireless sensor module per one cycle (=ØA)?
- How long does the system continue operations in total darkness (dark-time t_d)?

Energy consumption per cycle

In Table 2 is the general set-up and assumptions for the reference design and consequential calculations are listed. Table 3 gives an overview over time and electrical charge which has to be considered for the single tasks of the wireless sensor node.

Parameter	Unit	Value	Comment
Supply voltage	V	3.2	
Deep sleep (=t _S)	second	100	
RH resolution	bit	11	
T resolution	bit	11	
Capacity C	mF	250	@3.6V max
Light	lx	200	Office ~ 500 lx
cell performance	µA/cm ²	10	@200lx, 0.35V
Temperature	°C	25	ambient

Table 2 General set-up and assumptions

#	Task	time [ms]	Current [mA]	Charge [µAs]
1	STM300 power up	3.2	5.1	16.3
2	SHT21 start-up	15	0.35	5.3
3	resol. / T meas.	1.8	5.1	9.2
4	T measurement	11	0.32	3.5
5	Get raw T value	1.4	5.1	7.1
6	RH measurement	15	0.32	4.8
7	Get RH / calculate	0.7	5.1	3.6
8	Send data over RF	3.6 ²	33	118.8
	Σ pull-up current	(41)	0.16	6.7 ³
Су	/cle	tc~93⁴		Qc~175
De	eep sleep	t _s =100k		Qs~36

Table 3 Time and current per task (e.g. reference design)

² i.e. 3 sub telegrams, however time for complete transmission is longer

³ Sensor up-time * current of two pull-ups

⁴ Value is measured and varies, due to overlap of tasks

SHT21 interfacing with EnOcean STM300

Given times are measured with the reference design set-up with an error rating of +-5% on time measurement. Current consumption values are taken from respective datasheets as maximum values. However, values may differ markedly depending on e.g. set-up and environmental temperature.

The electrical charge for one cycle is about 175μ As. About two thirds thereof are consumed for transmission of the RF protocol. For further optimization of energy consumption, it might be considered not to send a RF protocol with every cycle.

The average current consumption is given as

 $\emptyset A$ = average power consumption Q_C = electrical charge per cycle Q_S = electrical charge per deep sleep t_C = time of one cycle t_S = time of deep sleep

Revision History

Calculation of dark-time

Taking into account that light might temporarily not be available while powering the sensor module with a solar panel (so called dark time t_d), the following calculation gives an estimation of the dark time.

With a capacity of C=250mF, it has to be considered that only the voltage range from 2.1V to 3.6V is available for sensor power up. The available electrical charge (= Q_A) is therefore given in following formula

$$Q_A = C \cdot (VDD_{\text{max}} - VDD_{\text{min}})$$

= 250mF \cdot (3.6V - 2.1V) = 375mAs

The dark time is the maximum time in darkness, where the sensor module is only powered from the charged capacitor.

$$t_d = \frac{Q_A}{\emptyset A} = \frac{375 mAs}{1.85 \mu A} \approx 49.4h$$

Increasing storage capacity and increase deep sleep time helps to allow for longer dark-times.

For more information please contact Sensirion support team support@sensirion.com.

Date	Revision	Changes
September 2011	1	Initial release

Copyright[©] 2011, SENSIRION. CMOSens[®] is a trademark of Sensirion All rights reserved

Headquarters and Subsidiaries

SENSIRION AG Laubisruetistr. 50 CH-8712 Staefa ZH Switzerland

phone: +41 44 306 40 00 fax: +41 44 306 40 30 info@sensirion.com www.sensirion.com

Sensirion AG (Germany) phone: +41 44 927 11 66 info@sensirion.com www.sensirion.com Sensirion Inc., USA phone: +1 805 409 4900 info_us@sensirion.com www.sensirion.com

Sensirion Japan Co. Ltd. phone: +81 3 3444 4940 info@sensirion.co.jp www.sensirion.co.jp Sensirion Korea Co. Ltd. phone: +82 31 345 0031 3 info@sensirion.co.kr www.sensirion.co.kr

Sensirion China Co. Ltd. phone: +86 755 8252 1501 info@sensirion.com.cn www.sensirion.com.cn

To find your local representative, please visit www.sensirion.com/contact

