

www.sensirion.com Version 1 – February 2020 1/21

SCC1-RS485/USB Sensor Cable

Driver DLL Documentation

Common DLL Commands for

SF06-based

Liquid Flow Sensors

Summary

This document describes the communication with Sensirion’s SF06 based liquid flow sensors products
via the SCC1-RS485 and SCC1-USB Sensor Cables and its dedicated Microsoft Windows driver DLL.

The communication between this DLL and the RS485 sensor hardware is based on the product’s
Sensirion-HDLC commands. (see separate documentation)

www.sensirion.com Version 1 – February 2020 2/21

TABLE OF CONTENTS

1 INTRODUCTION 4

1.1 Required Files 4

1.2 Applicability of Commands to Different Sensor Types 4

2 SHDLCDRIVER.DLL FUNCTION REFERENCE 5

2.1.1 OpenPort() 5

2.1.2 ClosePort() 5

2.1.3 DeviceReset() 5

3 SENSORCABLEDRIVER.DLL FUNCTION REFERENCE 6

3.1 Sensor Cable Commands 6

3.1.1 GetSensorVoltage () 6

3.1.2 SetSensorVoltage () 6

3.1.3 GetSensorType () 7

3.1.4 SetSensorType () 7

3.1.5 GetSensorAddress () 8

3.1.6 SetSensorAddress () 8

3.2 Measurement Functions 9

3.2.1 GetSensorStatus() 9

3.2.2 StartContMeasurementWithCommand() 10

3.2.3 StartContMeasurementWithParameter() 10

3.2.4 StopContinuousMeasurement() 11

3.2.5 GetLastMeasurementAllChannels () 11

3.2.6 GetExtendedBufferSize() 12

3.2.7 ClearBuffer() 12

3.2.8 GetInterlacedBufferSigned () 13

3.2.9 SetTotalizatorStatus () 13

3.2.10 ResetTotalizator () 14

3.2.11 GetTotalizatorValue () 14

3.3 Sensor Information Functions 15

3.3.1 GetSensorPartName() 15

3.3.2 GetScaleFactorAndUnit () 15

3.3.3 GetSensorSerialNumber() 16

www.sensirion.com Version 1 – February 2020 3/21

3.4 Advanced Sensor Functions 16

3.4.1 SensorSoftReset() 16

4 DLL ERROR CODES 17

4.1 Common Device Errors 17

4.2 Device Errors 17

4.3 Common System Errors 17

4.4 System Errors 18

5 DATA TYPES 18

6 SAMPLECODE 19

6.1 C++ Sample Code 19

6.2 C# Sample Code 20

REVISION HISTORY 21

www.sensirion.com Version 1 – February 2020 4/21

1 INTRODUCTION

This document describes the use of the 32Bit and 64Bit C-dlls to communicate with the RS485 Sensor
Cable.

1.1 REQUIRED FILES

To use the SHDLC Driver with the RS485 Sensor Cable, the following files are required in the same
directory as the .exe file:

 ShdlcDriver.dll

 SensorCableDriver.dll

1.2 APPLICABILITY OF COMMANDS TO DIFFERENT SENSOR TYPES

The SHDLC command reference (see separate document) lists in a table which commands apply to
which sensor type. Supported sensor types include SHTxx (Humidiy and Temperature), SF04 (Flow),
SF05 (Flow), SF06 (Flow).

This documentation contains the most relevant commands for use with SF06-based liquid flow sensors.
For a complete list of the commands available in the DLL, see the complete DLL command
documentation available from your Sensirion contact.

www.sensirion.com Version 1 – February 2020 5/21

2 SHDLCDRIVER.DLL FUNCTION REFERENCE

The functions in this chapter are in the file ShdlcDriver.dll.

2.1.1 OPENPORT()

Description

Opens the desired port and initializes the DLL.

Prototype

u32t OpenPort(u8t aPortType, char* aPortConfig, u32t* aPortHandle);

Parameter Meaning

aPortType Defines which kind of port should be opened:
- 0: Serial (RS232, RS485,...)

aPortConfig String which defines the port configuration. The string format depends on the used
port type:

- 0 (Serial): "<ComPortName>,<Baudrate>,<EchoMode>"
example: "COM1, 115200, EchoOn"
EchoOn: Data sent by the master is also received by the master
EchoOff: Data sent by the master is not received by the master

aPortHandle Returned port handle

2.1.2 CLOSEPORT()

Description

Closes a port.

Prototype

u32t ClosePort(u32t aPortHandle);

Parameter Meaning

aPortHandle Handle of the port

2.1.3 DEVICERESET()

Description

Perform a Reset on the Device, i.e. the Sensor Cable. This will also hard-reset any attached sensor.

Prototype

u32t DeviceReset(u32t aPortHandle, u8t aSlaveAdr);

Parameter Meaning

aPortHandle Handle of the port

aSlaveAdr Slave address

www.sensirion.com Version 1 – February 2020 6/21

3 SENSORCABLEDRIVER.DLL FUNCTION REFERENCE

The functions in this chapter are in the file SensorCable.dll.

3.1 SENSOR CABLE COMMANDS

3.1.1 GETSENSORVOLTAGE ()

Description

Get the sensor supply voltage setting

Prototype

u32t GetSensorVoltage(u32t aPortHandle, u8t aSlaveAdr,

 u8t* aVoltageSetting);

Parameter Meaning

aPortHandle Handle of the port

aSlaveAdr Slave address

aVoltageSetting Returned voltage setting, 0: 3.5V, 1: 5V

3.1.2 SETSENSORVOLTAGE ()

Description

Set the sensor supply voltage.

Prototype

u32t SetSensorVoltage(u32t aPortHandle, u8t aSlaveAdr,

 u8t aVoltageSetting);

Parameter Meaning

aPortHandle Handle of the port

aSlaveAdr Slave address

aVoltageSetting Voltage setting, 0: 3.5V, 1: 5V

www.sensirion.com Version 1 – February 2020 7/21

3.1.3 GETSENSORTYPE ()

Description

Returns the Sensor Type selected on the device.

Prototype

u32t GetSensorType(u32t aPortHandle, u8t aSlaveAdr, u8t* aSensorType);

Parameter Meaning

aPortHandle Handle of the port

aSlaveAdr Slave address

aSensorType ReturnedSensortype,
0: Flow Sensor (SF04 based products)
1: Humidity Sensor (SHTxx products)
2: Flow Sensor (SF05A based products)
3: Flow Sensor (SF06 based products)

3.1.4 SETSENSORTYPE ()

Description

Select new Sensortype.

Prototype

u32t SetSensorType(u32t aPortHandle, u8t aSlaveAdr, u8t aSensorType);

Parameter Meaning

aPortHandle Handle of the port

aSlaveAdr Slave address

aSensorType New Sensortype to be set
0: Flow Sensor (SF04 based products)
1: Humidity Sensor (SHTxx products)
2: Flow Sensor (SF05A based products)
3: Flow Sensor (SF06 based products

www.sensirion.com Version 1 – February 2020 8/21

3.1.5 GETSENSORADDRESS ()

Description

Get the I2C Sensor Address on the cable for communication between Sensor Cable and Sensor.

Prototype

u32t GetSensorAddress(u32t aPortHandle, u8t aSlaveAdr,

 u8t* aSensorAddress);

Parameter Meaning

aPortHandle Handle of the port

aSlaveAdr Slave address

aSensorAddress Returned I2C sensor address [0...127]

3.1.6 SETSENSORADDRESS ()

Description

Set the I2C Sensor Address on the cable for communication between Sensor Cable and Sensor.

Prototype

u32t SetSensorAddress(u32t aPortHandle, u8t aSlaveAdr, u8t aSensorAddress);

Parameter Meaning

aPortHandle Handle of the port

aSlaveAdr Slave address

aSensorAddress New I2C sensor address [0...127]

www.sensirion.com Version 1 – February 2020 9/21

3.2 MEASUREMENT FUNCTIONS

3.2.1 GETSENSORSTATUS()

Description

Get the status of the sensor and continuous measurement. See the separate application note for a
detailed description of the Auto-Detection Mode. Applies to sensor types 0, 1, 2, 3.

Prototype

u32t GetSensorStatus(u32t aPortHandle, u8t aSlaveAdr, u8t* aSensorStatus);

Parameter Meaning

aPortHandle Handle of the port

aSlaveAdr Slave address

aSensorStatus Returned status of sensor or device:
Bit 0: 0: Sensor idle
 1: Sensor Busy
Bit 1: 0: Continuous Measurement disabled, Sensor is idle or in Detect Mode
 1: Continuous Measurement enabled, Sensor is in Measurement Mode
Bits 2..4: Relevant for sensor type 0 only.

www.sensirion.com Version 1 – February 2020 10/21

3.2.2 STARTCONTMEASUREMENTWITHCOMMAND()

Description

(for Firmware ≥1.7) Start continuous measurement with given interval and I2C command. Applies to
sensor type 3 only.

Prototype

u32t StartContMeasurementWithCommand(u32t aPortHandle, u8t aBroadcastMode,

 u8t aSlaveAdr, u16t aInterval,

 u16t aCommand);

Parameter Meaning

aPortHandle Handle of the port

aBroadcastMode Define mode for broadcast (see Error! Reference source not found.)

aSlaveAdr Slave address

aInterval Interval between measurements in ms,
 0: as fast as possible
>0: Interval in ms

aCommand 16Bit I2C command to start measurement

3.2.3 STARTCONTMEASUREMENTWITHPARAMETER()

Description

(for Firmware ≥1.7) Start continuous measurement with given interval, I2C command and optional I2C
command parameters. Applies to sensor type 3 only.

Prototype

u32t StartContMeasurementWithParameter(u32t aPortHandle,u8t aBroadcastMode,

 u8t aSlaveAdr, u16t aInterval,

 u16t aCommand, u8t aParameter[],

 u8t aNbrOfParameter);

Parameter Meaning

aPortHandle Handle of the port

aBroadcastMode Define mode for broadcast (see Error! Reference source not found.)

aSlaveAdr Slave address

aInterval Interval between measurements in ms,
 0: as fast as possible
>0: Interval in ms

aCommand 16Bit I2C command to start measurement

aParameter Array with Bytes to send after I2C command

aNbrOfParameter Number of Bytes to send after I2C command

www.sensirion.com Version 1 – February 2020 11/21

3.2.4 STOPCONTINUOUSMEASUREMENT()

Description

Stop the continuous measurement after the current measurement is finished. Applies to sensor types 0,
2, 3.

Prototype

u32t StopContinuousMeasurement(u32t aPortHandle, u8t aBroadcastMode,

 u8t aSlaveAdr);

Parameter Meaning

aPortHandle Handle of the port

aBroadcastMode Define mode for broadcast (see Error! Reference source not found.)

aSlaveAdr Slave address

3.2.5 GETLASTMEASUREMENTALLCHANNELS ()

Description

(for Firmware ≥1.8) Read out last measurement of all 3 channels during continuous measurement. Use
start Continuous Measurement before using this command. If measurement is not started, not yet
finished or no new measurement is available, error 1376 is returned. applies to Sensor type 3 only.

Prototype

u32t GetLastMeasurementAllChannels(u32t aPortHandle, u8t aBroadcastMode,

 u8t aSlaveAdr, u8t aClearAfterRead,

 i16t aMeasureResult[3])

Parameter Meaning

aPortHandle Handle of the port

aBroadcastMode Define mode for broadcast (see Error! Reference source not found.)

aSlaveAdr Slave address

aClearAfterRead 0: Measurements aren’t cleared after read
>1: Measurements are cleared after read

aMeasureResult Returned last measurement result of all 3 sensor measurement channels. Typically
flow, temperature and aux. See sensor datasheet for details.

www.sensirion.com Version 1 – February 2020 12/21

3.2.6 GETEXTENDEDBUFFERSIZE()

Description

Return the actual number of measurements in the extended buffer. Applies to sensor types 0, 2, 3.

Prototype

u32t GetExtendedBufferSize(u32t aPortHandle, u8t aBroadcastMode, u8t

aSlaveAdr, u32t* aBufferSize);

Parameter Meaning

aPortHandle Handle of the port

aBroadcastMode Define mode for broadcast (see Error! Reference source not found.)

aSlaveAdr Slave address

aBufferSize Returned number of measurements in extended Buffer

3.2.7 CLEARBUFFER()

Description

Clear all measurements from the buffer. Applies to sensor types 0, 2, 3.

Prototype

u32t ClearBuffer(u32t aPortHandle, u8t aBroadcastMode, u8t aSlaveAdr);

Parameter Meaning

aPortHandle Handle of the port

aBroadcastMode Define mode for broadcast (see Error! Reference source not found.)

aSlaveAdr Slave address

www.sensirion.com Version 1 – February 2020 13/21

3.2.8 GETINTERLACEDBUFFERSIGNED ()

Description

(for Firmware ≥1.7) Get buffer for the oldest interlaced data, with additional buffer information. Applies
to sensor type 3 only. See also the SHDLC documentation for further details.

Prototype signed

u32t GetInterlacedBufferSigned(u32t aPortHandle, u8t aBroadcastMode,

 u8t aSlaveAdr,

 i16t aInterlacedMeasurements[127],

 u8t* aLength, u32t* aNbrOfLostData,

 u16t* aNbrOfRemainingData,

 u16t* aNbrOfInterlacedData);

Parameter Meaning

aPortHandle Handle of the port

aBroadcastMode Define mode for broadcast (see Error! Reference source not found.)

aSlaveAdr Slave address

aInterlacedMeasurements Pointer to array to write signed interlaced measurements

aLength Return number of measurements

aNbrOfLostData If the time between the „ GetInterlacedBufferSigned‟ command calls is to
large, the internal ring buffer will overrun. In this case, the oldest package of
values in the buffer is cleared when a new value enters. This number is a
counter which counts the missing values between the function calls (number
of values which were not readout by the bus master).

aNbrOfRemainingData The number of packages which remains in the buffer after this function call
(the number of returned values is limited to 120 values because the
maximum allowed data part in the SHDLC frame is 255 bytes).

aNbrOfInterlacedData Number of interlaced data per package.

3.2.9 SETTOTALIZATORSTATUS ()

Description

Enable or disable the Totalizator. The value of the Totalizator is not changed with this command.
Applies to sensor types 0, 2, 3.

Prototype

u32t SetTotalizatorStatus(u32t aPortHandle, u8t aBroadcastMode,

 u8t aSlaveAdr, u8t aStatus);

Parameter Meaning

aPortHandle Handle of the port

aBroadcastMode Define mode for broadcast (see Error! Reference source not found.)

aSlaveAdr Slave address

aStatus Status of the Totalizator, 0: disabled, 1: enabled

www.sensirion.com Version 1 – February 2020 14/21

3.2.10 RESETTOTALIZATOR ()

Description

Set the Totalizator value to zero, the Totalizator status (enabled/disabled) is not changed. The
Totalizator can be reset anytime. Applies to sensor types 0, 2, 3.

Prototype

u32t ResetTotalizator(u32t aPortHandle, u8t aBroadcastMode,

 u8t aSlaveAdr);

Parameter Meaning

aPortHandle Handle of the port

aBroadcastMode Define mode for broadcast (see Error! Reference source not found.)

aSlaveAdr Slave address

3.2.11 GETTOTALIZATORVALUE ()

Description

Get the value of the Totalizator. This value is the sum of all unscaled measurements while in continuous
measurement mode. See the separate application note for details. Applies to sensor types 0, 2, 3.

Note that for sensor type 3 only the first measurement result (typically the flow measurement) is
summed up in the totalizer.

Prototype

u32t GetTotalizatorValue(u32t aPortHandle, u8t aBroadcastMode,

 u8t aSlaveAdr, i64t* aTotalizatorValue);

Parameter Meaning

aPortHandle Handle of the port

aBroadcastMode Define mode for broadcast (see Error! Reference source not found.)

aSlaveAdr Slave address

aTotalizatorValue Value of Totalizer

www.sensirion.com Version 1 – February 2020 15/21

3.3 SENSOR INFORMATION FUNCTIONS

3.3.1 GETSENSORPARTNAME()

Description

Get the part name of the flow sensor. Applies to sensor types 0, 3.

Prototype

u32t GetSensorPartName(u32t aPortHandle, u8t aSlaveAdr,

 char* aPartNameString, u32t aStringMaxSize);

Parameter Meaning

aPortHandle Handle of the port

aSlaveAdr Slave address

aPartNameString Location where to write the information string (min. length 21)

aStringMaxSize Maximum number of characters allowed to write to the aPartNameString location
(including null-character)

3.3.2 GETSCALEFACTORANDUNIT ()

Description

(for Firmware ≥1.8) Get the scale factor, unit and check of the sensor for the given start measurement
command. Sensor type 3 only, only available on some sensor products.

Prototype

u32t GetScaleFactorAndUnit(u32t aPortHandle, u8t aSlaveAdr, u16t aArgument,

 u16t* aScaleFactor, u16t* aFlowUnit,

 u16t* aCrcResult)

Parameter Meaning

aPortHandle Handle of the port

aSlaveAdr Slave address

aArgument Start command for read information

aScaleFactor Returned scale factor

aFlowUnit Returned flow unit

aCrcResult Returned CRC result

www.sensirion.com Version 1 – February 2020 16/21

3.3.3 GETSENSORSERIALNUMBER()

Description

Get the serial number of the sensor. Applies to sensor types 0, 2, 3.

Prototype

u32t GetSensorSerialNumber(u32t aPortHandle, u8t aSlaveAdr,

 u32t* aSensorSerialNumber);

Parameter Meaning

aPortHandle Handle of the port

aSlaveAdr Slave address

aSensorSerialNumber Returned serial number

3.4 ADVANCED SENSOR FUNCTIONS

3.4.1 SENSORSOFTRESET()

Description

Execute a hard reset with the sensor and check for correct response.

Prototype

u32t SensorSoftReset(u32t aPortHandle, u8t aSlaveAdr);

Parameter Meaning

aPortHandle Handle of the port

aSlaveAdr Slave address

www.sensirion.com Version 1 – February 2020 17/21

4 DLL ERROR CODES

4.1 COMMON DEVICE ERRORS

Error code Error description

1 Device reported an illegal data size

2 Command not accepted from device

3 No access right on device for this command

4 Parameter out of range (report from device)

4.2 DEVICE ERRORS

Error code Error description

32 command could not be executed because sensor is busy

33 Sensor gives no I2C acknowledge

34 CRC error while communication with sensor

35 Timeout of sensor while measurement

36 No measure is started

4.3 COMMON SYSTEM ERRORS

Error code Error description

128 Fatal system error

129 In the Rx data stream, the start or stop byte (0x7E) is missing.

130 Too few bytes in Rx frame (frame content + checksum >= 5 bytes).

131 The transmitted data length information in the Rx frame does not match with the number
of bytes received.

132 The port configuration string has an illegal format.

133 Could not open the COM port.

134 Could not close COM port.

135 Unknown communication type of communication port.

136 Incoming checksum was wrong.

137 The device command in the received frame is not the same as sent.

138 The returned number of Data is wrong for this command

139 Illegal broadcast mode

140 One of the given arguments has an illegal size.

141 The SerialPortOverlapped class reported an error.

142 Do not use the broadcast address when calling the transceive function.

143 The maximum number of open ports which could be handled by the DLL is reached.

144 The given port handle is not valid.

www.sensirion.com Version 1 – February 2020 18/21

145 The requested functionality is not implemented yet.

146 An error occured while calling a windows API function.

147 A timeout occured while waiting for the RX data.

148 The function SerialPortOverlapped.WriteData() could not write all data.

149 The COM port is not open when trying to work with it (in SerialPortOverlapped).

4.4 SYSTEM ERRORS

Error code Error description

1024 There is no connection to ShdlcDriver.dll (library or one of it's functions could not be
loaded).

1025 The returned number of Data is wrong for this command

1026 Illegal broadcast mode

1027 Wrong device command in response frame

1376 The current measure is not yet finished for read out

5 DATA TYPES

In the Documentation, an own notation for the different data types is used. Note that the DLL work with
the little endian data format.

notation C++ type range
u8t unsigned char 0 … 255
i8t signed char -128 … 127
u16t unsigned int 0 … 65535
i16t signed int -32768 … 32767
u32t unsigned long int 0 … 4’294’967’295
i32t signed long int -2’147’483’648 … 2’147’483’647
u64t unsigned long long int 0 … 264-1
i64t signed long long int -263 … 263-1
ft float 6 decimals
dt double 10 decimals
bt bool 1/0; true/false

www.sensirion.com Version 1 – February 2020 19/21

6 SAMPLECODE

6.1 C++ SAMPLE CODE

#include <windows.h>

#include <stdio.h>

/***

* basic types: making the size of types clear

***/

typedef unsigned char u8t; ///< range: 0 .. 255

typedef signed char i8t; ///< range: -128 .. +127

typedef unsigned short u16t; ///< range: 0 .. 65535

typedef signed short i16t; ///< range: -32768 .. +32767

typedef unsigned long u32t; ///< range: 0 .. 4'294'967'295

typedef signed long i32t; ///< range: -2'147'483'648 .. +2'147'483'647

typedef unsigned __int64 u64t; ///< range: 0 .. 2^64 - 1

typedef __int64 i64t; ///< range: -2^63 .. 2^63 - 1

typedef float ft; ///< range: +-1.18E-38 .. +-3.39E+38

typedef double dt; ///< range: .. +-1.79E+308

typedef bool bt; ///< values: 0, 1 (real bool used)

// Definition of commands in common Dll

typedef u32t (__cdecl *FctOpenPort) (u8t aPortType, char* aPortConfig, u32t* aPortHandle);

typedef u32t (__cdecl *FctClosePort) (u32t aPortHandle);

// Definition of commands in Sensor Cable Dll

typedef u32t (__cdecl *FctGetSensorPartName) (u32t aPortHandle, u8t aSlaveAdr, char* aPartNameString, u32t

aStringMaxSize);

int _tmain(int argc, _TCHAR* argv[])

{

 FctOpenPort OpenPort;

 FctClosePort ClosePort;

 FctGetSensorPartName GetSensorPartName;

 // Get a handle to the ShdlcDriver DLL module.

 HINSTANCE CommonLib = LoadLibrary(TEXT("ShdlcDriver.dll"));

 // If the handle is valid, try to get the function address.

 if (CommonLib != NULL)

 {

 OpenPort = (FctOpenPort)GetProcAddress(CommonLib, "OpenPort");

 ClosePort = (FctClosePort)GetProcAddress(CommonLib, "ClosePort");

 }

 else

 {

 printf("ShdlcDriver.dll not found");

 getchar();

 }

 // Get a handle to the SensorCableDriver DLL module.

 HINSTANCE SensorCableLib = LoadLibrary(TEXT("SensorCableDriver.dll"));

 // If the handle is valid, try to get the function address.

 if (SensorCableLib != NULL)

 {

 GetSensorPartName = (FctGetSensorPartName)GetProcAddress(SensorCableLib, "GetSensorPartName");

 }

 else

 {

 printf("SensorCableDriver.dll not found");

 getchar();

 }

 u32t xError;

 u32t Connection;

 // open port

 xError = OpenPort(0, "COM11, 115200, ECHOOFF", &Connection);

 // Read SensorPartName from device at port Connection and Address 0

 char Partname[256];

 xError = GetSensorPartName(Connection, 0, Partname, 256);

 printf(Partname);

www.sensirion.com Version 1 – February 2020 20/21

 getchar();

 // close Port

 xError = ClosePort(Connection);

 return 0;

}

6.2 C# SAMPLE CODE

using System;

using System.Text;

using System.Runtime.InteropServices;

namespace CsSampleCode

{

 class Program

 {

 // Import of commands in common Dll

 [DllImport("ShdlcDriver.dll", EntryPoint = "OpenPort", CharSet = CharSet.Ansi,

 CallingConvention = CallingConvention.Cdecl)]

 public static extern UInt32 OpenPort(byte aPortType, string aPortConfig, out UInt32 aPortHandle);

 [DllImport("ShdlcDriver.dll", EntryPoint = "ClosePort", CharSet = CharSet.Ansi,

 CallingConvention = CallingConvention.Cdecl)]

 public static extern UInt32 ClosePort(UInt32 aPortHandle);

 // Import of commands in Sensor Cable Dll

 [DllImport("SensorCableDriver.dll", EntryPoint = "GetSensorPartName", CharSet = CharSet.Ansi,

 CallingConvention = CallingConvention.Cdecl)]

 public static extern UInt32 GetSensorPartName(UInt32 aPortHandle, byte aSlaveAdr,

 StringBuilder aSensorPartName, UInt32 aStringMaxSize);

 static void Main(string[] args)

 {

 UInt32 xPortHandle;

 UInt32 xError;

 // open Port

 xError = OpenPort(0, "COM1, 115200, ECHOOFF", out xPortHandle);

 // Read SensorPartName from device at port xPortHandle and Address 0

 StringBuilder xSensorPartName = new StringBuilder(256);

 xError = GetSensorPartName(xPortHandle, 0, xSensorPartName, 256);

 Console.Write(xSensorPartName);

 Console.ReadLine();

 // close Port

 xError = ClosePort(xPortHandle);

 }

 }

}

www.sensirion.com Version 1 – February 2020 21/21

REVISION HISTORY

Date Version Change

Feb. 20 1 Initial version

